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Abstract. A method is developed to consistently satisfy the Gibbs equilibrium conditions between the
quark–gluon and hadronic phase, although each phase has been formulated in separate grand canonical par-
tition functions containing three quark flavours. The sector in the space of thermodynamic variables where
the transition takes place is restricted to a curve, according to the phase diagram of QCD. The conserva-
tion laws of quantum numbers are also imposed on the transition curve. The effect of the inclusion of the
pentaquark states is considered. The data from S+S, S+Ag (SPS) and Au+Au (RHIC) are found to be
compatible with the formation of a QGP phase and the occurrence of the chemical freeze-out immediately
after crossing the transition line, but the data from Pb+Pb (SPS) are not.

PACS. 12.40.Ee; 05.70.Fh; 12.38.Mh; 24.10.Pa

1 Introduction

Quantum chromodynamics is universally accepted as the
theory of the strong interactions.Within the context of this
theory the quark–gluon plasma phase receives an accurate
description. However, the formation of the hadronic phase,
which is the final state of any possible primordial QGP
state, still remains an open problem in view of QCD. On
the other hand, the hadronic multiplicities emerging from
heavy-ion collisions have been extensively and successfully
predicted by statistical models using a handful of thermo-
dynamical parameters [1–15]. So the use of two separate
models for the QGP and the hadron phase, called a hadron
gas (HG), offers a complementary approach.
Effective model calculations based on QCD predict that

the transition between QGP and the hadronic phase is
a first order one at high baryon densities (depicted by
a critical line on the (T, µB) plane), while it is of higher
order at low or zero baryon densities (crossover). The end
point of the first order transition line is a critical point [16–
18]. The transition points must be restricted to a curve on
the phase diagram of temperature and chemical potential
of the baryon. In view of this aspect any models to be used
for the description of QGP and HG have to be matched
properly at the transition between the two phases.
The aim of this work is to trace the sector of the space

of thermodynamic variables where the QGP–hadron tran-
sition occurs, with the following requirements.

(a) Any mixed phase formed in the first order part of the
transition must occupy only a curve in the space of the
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thermodynamic variables. This requirement is even
stronger in the crossover area where a mixed phase
does not exist.

(b) The Gibbs equilibrium conditions have to be satis-
fied, which amount to TQGP = THG for thermal equi-
librium, PQGP = PHG for mechanical equilibrium and
{µ}QGP = {µ}HG for chemical equilibrium, where {µ}
stands for the set of chemical potentials used in the
description of the two phases.

(c) All the conservation laws of quantum numbers like
baryon number B, electric charge Q, strangeness S,
etc. have to be satisfied at every point on the tran-
sition line, in a way that they could be extended
for every number of flavours that are present in the
system.

One is confronted with these problems every time sepa-
rate partition functions are used for the two phases, but the
simultaneous fulfillment of the above conditions has not
been achieved. Among the numerous examples that exist,
in [19], where only light, identical quarks are used (u= d≡
q), the curves of equal pressures are made to approximately
coincide by the choice of the external parametersB and as,
something which does not allow for matching when other
flavours are introduced. In [20] the strange fugacity λs is
discontinuous at the HG–QGP transition, and the conser-
vation of baryon number can only be accommodated in the
case of a first order transition. In [21] the strange chem-
ical potential µs is also discontinuous. In [22] only q quarks
are considered, and the requirement of the continuity of
the chemical potentials and conservation of baryon num-
ber leads to a mixed phase which occupies a surface and
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not a line on the (T, µB) plane. The same is true in [23–
25] where also s quarks are included. In [26] there is an
analogous situation as in [22] with a critical line at the
(T, µB) plane, but the conservation of baryon number is
not considered. In [27] the q and s quark chemical poten-
tials are continuous, but baryon number and strangeness
of the system are not kept constant during hadronisation,
since hadrons evaporate from the QGP. The considerations
of [20–27] are consistent with a first order transition but
cannot be valid at the crossover region. In this work all
the thermodynamic variables and the pressure will be kept
continuous at the transition line (in contrast with [19–21]),
and the first order part of the transition will be presented
by a line on the (T, µB) plane (different from [22–25]), and
no evaporation of hadrons will be assumed from the system
(different from [27]).
Let us consider the requirements that a system with

Nf quark flavours has to satisfy. Every conservation law
accounts for two equations to be fulfilled. One sets the
value of the quantum quantity, e.g. 〈B〉QGP = bi, and the
other one assures the conservation at the phase transi-
tion, e.g. 〈B〉QGP = 〈B〉HG. The total number of equations
that must hold is, thus, 2Nf +1 (the unit accounts for the
equality of pressures). Assuming the existence of full chem-
ical equilibrium, every quark flavour introduces one extra
fugacity in the set of thermodynamical variables, which,
with the inclusion of volume and temperature, amount to
Nf +2. At the crossover region, the surviving free param-
eters required to fulfill the necessary equations decrease
to Nf +1, because of the equality of densities and conse-
quently the equality of volumes between the two phases
(VQGP = VHG). At the first order transition line the free
parameters are Nf +2, since now VQGP �= VHG. It is evi-
dent, then, that the necessary 2Nf +1 conditions can be
fulfilled only at the first order part of the transition and
only when there is one flavour present, Nf = 1, or when
the u and d quarks are considered identical (q quarks,
described by a single chemical potential µq). It has to
be emphasised that the conditions like 〈B〉QGP = bi have
to be satisfied in order to have a whole line of transi-
tion points. If these equations are dropped, then we are
left with Nf +1 equations, which can be solved but re-
sult in a unique point in the space of the thermodynamical
parameters.

2 Expanding the fugacity sector

It is clear that in order to satisfy 2Nf +1 relations, every
flavour has to be accompanied by two fugacities instead
of one. The multiplicity data emerging from heavy-ion
collisions suggest that the thermalised hadronic system
has not achieved full chemical equilibrium. First the par-
tial chemical equilibrium factor of the strangeness γs had
been introduced [2, 3] and used extensively to model the
data [4–8]. Also a similar factor for the light quarks γq was
introduced [9] and used in certain analyses [10, 11]. Here
the light u and d quarks will be accompanied by separate
fugacities γu, γd. A factor γj controls the quark density

nj+nj̄ [4] in contrast with the usual fugacity λj , which
controls the net quark density nj −nj̄. These additional
fugacities can serve the purpose of satisfying the neces-
sary equations at the transition point, as well as preserving
the continuity of the chemical potentials between the two
phases.
A system with three flavours (u, d and s quarks) is de-

scribed by the set of thermodynamical variables (T, λu, γu,
λd, γd, λs, γs)≡ (T, {λ, γ}). Setting x= VHG/VQGP, the set
of equations to be satisfied at every phase transition point
will be

P
QGP
(T, {λ, γ}) = P

HG
(T, {λ, γ}) , (1)

nBQGP(T, {λ, γ}) = xnBHG(T, {λ, γ}) , (2)

nQQGP(T, {λ, γ}) = xnQHG(T, {λ, γ}) , (3)

nSQGP(T, {λ, γ}) = xnSHG(T, {λ, γ}) , (4)

nBQGP(T, {λ, γ}) = 2βnQQGP(T, {λ, γ}) , (5)

nSQGP(T, {λ, γ}) = 0 , (6)

where the n denote the densities. For isospin symmetric
systems one has to set β = 1 in (5). Equations (1)–(6) only
have one free variable, necessary to produce a whole tran-
sition line in the phase diagram. At crossover, we have
x= 1, whereas at the first order transition line the inequal-
ity VQGP �= VHG preserves the survival of x as an extra
variable.

3 A solution for the transition curve

The above considerations are applicable to every partition
function connected to the hadronic and the quark state. It
is interesting, though, to check whether they can produce
a real solution for the transition curve, i.e. that the sys-
tem of (1)–(6) is not impossible. For this reason, two simple
models will be employed. For the hadron gas phase only
the repulsive part of the hadronic interaction will be taken
into account through a Van der Waals treatment of the
system volume. In order to have a thermodynamically con-
sistent description, the grand canonical partition function
of a system containing h hadronic species, each of which is
associated with the chemical potential µi, may be written
down in the form [28, 29]

ZHG(T, {µ}, V ) =
∞∑

N1=0

· · ·
∞∑

Nh=0

h∏

i=1

exp

(
µiNi

T

)

×Zpti (T,Ni, V̂ )θ(V̂ ) . (7)

In (7) ‘pt’ refers to the ideal system of point particles, i.e.
to the absence of repulsive interactions. The available vol-

ume is V̂ ≡ V −
∑h
i=1 viNi, where vi is the proper volume

of the i species and Ni the number of i particles present in
the system. The θ function preserves the partition function
from negative contributions of the volume and is dealt with
by a Laplace transformation, which causes the pressure to
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acquire the form

PHG(T, {µ}) = P
pt
HG(T, {µ̃}) =

h∑

i=1

P pti (T, µ̃i) , (8)

where the quantities µ̃i are connected to the chemical po-
tentials µi and the system pressure

µ̃i = µi− viPHG(T, {µ}) . (9)

In the following the Boltzmann approximation will be
used. Also, the proper volumes of all the particle species
will be taken equal, so

v1 = · · ·= vh = v0 . (10)

The need for these two simplifications will become ap-
parent in Sect. 5, where the experimental data will be ad-
dressed. The ideal partition function of the point particles
i is then

lnZpti (T, µi, V ) = exp
(µi
T

)
V
T

2π2
gim

2
iK2

(mi
T

)

≡ exp
(µi
T

)
V c(T ) , (11)

where the gi are degeneracy factors due to spin and isospin,
and K2 is the modified Bessel function of the second kind.
The pressure of the particles of i species will then be

P pti (T, µi) = T
lnZpti (T, µi, V )

V
= T exp

(µi
T

)
c(T ) .

(12)

With the use of (9), (10) and (12) it is found that

P pti (T, µ̃i) = exp

(
−
v0PHG

T

)
P pti (T, µi) , (13)

a relation that can be inserted into (8) to give

PHG(T, {µ}) = exp

[
−
v0PHG(T, {µ})

T

] h∑

i=1

P pti (T, µi) .

(14)

Then the particular density ni,HG can be calculated
from (14) as

ni,HG(T, {µ}) =
∂PHG(T, {µ})

∂µi

∣∣∣∣
T,µ1,···,µi−1,µi+1,···,µh

.

(15)

Also (11) gives

npti (T, {µ}) =
1

T
P pti (T, {µ}) . (16)

Equations (14)–(16) lead to the determination of the
density:

ni,HG(T, {µ}) =

exp
[
− v0PHG(T,{µ})

T

]
npti (T, {µ})

1+ v0 exp
[
− v0PHG(T,{µ})T

]∑
l n
pt
l (T, {µ})

, (17)

where the summation over index l spans over all particle
species.
The hadronic partition function to be used extends to

all hadronic states containing u, d and s quarks as they are
listed in [30]. An equivalent description is possible if the fu-
gacities are used in place of the chemical potentials. Also
the different hadrons, described in the preceding equations
with index i, can be organised in families each of which is
characterised by the same fugacity and contains a number
of particle species differing in mass and degeneracy factors.
The HG partition function for the point particles, which
contains all the particle species can, in accordance to (11),
be written down as follows:

lnZptHG(V, T, {λ, γ}) =
V T

2π2

∑

a

λa
∑

k

gakm
2
akK2

(mak
T

)
,

(18)

where the gak are degeneracy factors due to spin and
isospin. The index a runs over all hadronic families, each
of which contains members with the same quark content,
and k runs over all the particles of this family. The fugac-
ity λa =

∏
ν λ
Nν−Nν̄
ν γNν+Nν̄ν , where ν = u, d, s andNν(Nν̄)

is the number of ν(ν̄) quarks contained in a hadron be-
longing to the family labeled a. For the light unflavoured
mesons with quark content (c1/2)(uū+ dd̄)+ c2ss̄, c1+
c2 = 1, the fugacity used is λa = (γuγd)

c1γ2c2s . The ideal
partition function (18) can be used to determine the pres-
sure and densities of the point particle system. Thus (14)
acquires the form

PHG(T, {λ, γ}) = exp

[
−
v0PHG(T, {λ, γ})

T

]

×
T 2

2π2

∑

a

λa
∑

k

gakm
2
akK2

(mak
T

)
,

(19)

which can be solved through an arithmetic procedure to
evaluate the system pressure PHG for given set of variables
(T, {λ, γ}). A particular density npti can also be evaluated
by (18), and using the already calculated PHG the density
with the Van der Waals corrections is

ni,HG (T, {λ, γ})

=

(
exp

[
−
v0PHG(T, {λ, γ})

T

]
npti (T, {λ, γ})

)

/(
1+ v0 exp

[
−
v0PHG(T, {λ, γ})

T

]
T

2π2

×
∑

a

λa
∑

k

gakm
2
akK2

(mak
T

))

≡ f(v0;T, {λ, γ})n
pt
i (T, {λ, γ}) . (20)

For the QGP phase a simple model containing three
flavours is used. The quarks are non-interacting, and only
the presence of gluons is accounted for, as well as the effect
of the vacuum through the MIT bag constant,B. A wealth
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of quark fugacities is easily accommodated, though, in this
model. The QGP partition function is consequently

lnZQGP(V, T, {λ, γ}) =
NsNcV

6π2T

×
∑

ν

∫ ∞

0

p4√
p2+m2j

1

e

√
p2+m2

j
/T
(λνγν)−1+1

dp

+V
8π2T 3

45
−
BV

T
, (21)

whereNs = 2 andNc = 3. The index ν runs over all quarks
and antiquarks and the fugacity λν̄ = λ

−1
ν and γν̄ = γν .

The current quark masses are mu = 1.5, md = 6.75 and
ms = 117.5MeV [30].
At the first order QGP–HG transition a mixed phase is

assumed. This phase spans over a curve in the (T, {λ, γ})-
space, so these variables are kept constant throughout the
mixed phase. The only thermodynamic variable that is
allowed to change is the system volume V . The volume
equals VHG at the pure hadronic phase, at one end of the
first order transition, and VQGP at the pure quark phase, at
the other end of the transition. The system volume V of the
mixed phase can then be expressed as

Vmixed = δVHG+(1− δ)VQGP . (22)

The parameter δ is 0≤ δ ≤ 1, and for δ = 1 (δ = 0) we have
a pure HG (QGP) phase. The mixed phase is realised in a
composition of volume δVHG existing in the hadronic phase
and volume (1− δ)VQGP in the QGP phase.
The pressure of the hadronic part of the mixed system

can be calculated from (19) for the hadronic volume δVHG.
It is easily seen, though, that this pressure does not de-
pend on the volume. Since the hadronic pressure depends
only on the variables (T, {λ, γ}), which are held constant
for all values of δ in (22), it is concluded that this pres-
sure remains unchanged at every point of the mixed phase
and equals PHG of the pure hadronic phase (for δ = 1). It
is, also, realised by checking (21) that the QGP pressure
does not depend on the volume, either. With similar rea-
soning, it is deduced that the pressure of the quark part of
the mixed phase remains constant and equals the pressure
PQGP of the pure QGP phase (for δ = 0). Then (1) ensures
the equality between the pressures of the pure phases, so
the pressures of the hadronic and the quark part of the
mixed phase are equal. Thus

Pmixed = PHG = PQGP . (23)

The pressure is, consequently, kept constant throughout
the first order transition. The part of the P–V isotherm
that corresponds to the mixed phase is parallel to the V
axis, as it is expected in a first order transition.
On the contrary, the densities vary. Equation (20) en-

sures that the density of the hadronic part of the mixed
phase is held equal to the respective density of the pure
hadronic phase, ni,HG. Equation (21) ensures that the
density of the quark part of the mixed phase is held equal
to the respective density of the pure quark phase, ni,QGP.

But in general ni,HG(T, {λ, γ}) �= ni,QGP(T, {λ, γ}). If the
density ni is associated with the quantity Ni, then

ni,mixed =
Ni,mixed

Vmixed
=
Ni,HG+Ni,QGP

Vmixed

=
δVHG

Vmixed
ni,HG+

(1− δ)VQGP
Vmixed

ni,QGP . (24)

It is easily checked that for δ = 1 (δ = 0) the density of the
pure hadronic (quark) state is produced. The conservation
of the quantum quantities B, Q and S is ensured in the
mixed phase. Equation (2) implies that 〈B〉HG = 〈B〉QGP.
Then multiplication of both sides of (24) by Vmixed gives

VmixednBmixed = δ〈B〉HG+(1− δ)〈B〉QGP
⇒ 〈B〉mixed = 〈B〉HG = 〈B〉QGP . (25)

Equations (3) and (4) produce similar equations for Q
and S.
Between the crossover region (where x= 1) and the first

order transition line (where x �= 1), the critical point re-
sides. Observing (1)–(6), it is clear that they do not provide
a restriction on x, other than that it should be a continuous
function. So these equations can accommodate an addi-
tional constraint in the form of x, which may be provided
by a sophisticated partition function that records the full
part of the interaction (the attractive part as well).
The system of (1)–(6) can then be solved for x= 1 for

the crossover region or for x �= 1 for the first order tran-
sition curve. The system is simplified observing that the
strangeness neutrality at the QGP phase (6) leads to the
solution λs = 1. This solution is valid for every case of QGP
partition function, as long as products of the fugacities
of the strange quark with the fugacities of the u and d
quarks do not appear. The initial system then is reduced
to the system of (1)–(5) for λs = 1. The HG partition func-
tion (7) and the QGP partition function (21) is used for the
system of (1)–(5). For the particular choices of partition
functions, two parameters,B and v0, are left open, produc-
ing different solutions for the transition curves. The system
of (1)–(5) for λs = 1 accepts as solution for the variable γs
the value 0, since then (4) is automatically satisfied. This is
a trivial solution, because it is equivalent to the absence of
the strange quarks in the system, and therefore such solu-
tions should be excluded. Non-trivial solutions for the ther-
modynamic variables are depicted for B1/4 = 272MeV in
Figs. 1–4 for the isospin symmetric case (β = 1). Since the
solutions are calculated in the Boltzmann approximation,
which does not include any Bose singularities, additional
checks are carried out for every part of the calculations to
ensure that the evaluated variables are such that no Bose
singularity is approached. Lines (a) represent the solution
without the inclusion of pentaquarks and are drawn for
v0 = 2.83×10−8MeV−3. The crossover region, which is de-
termined uniquely after setting the parametersB and v0, is
drawn everywhere with slashed lines.
Two additional issues concerning the phase transition

are the position of the critical point where the cross-over
region ends and the first order transition sets in, as well as
the ratio of the volumes x= VHG/VQGP at the first order
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Fig. 1. Temperature as a function of chemical potential of
the baryon at the QGP–hadron gas transition line for B1/4 =
272MeV, without (lines (a),(c)) and with (line (b)) the in-
clusion of the pentaquark states. Lines (a) and (b) are cal-
culated with v0 = 2.83×10

−8MeV−3 and line (c) with v0 =
2.06×10−8MeV−3. Line (d) is the phase transition curve cal-
culated from lattice QCD in [31]

Fig. 2. Relative chemical equilibrium variable of the u quark,
γu, as a function of the chemical potential of the baryon at the
QGP–hadron gas transition line. Lines (a)–(c) correspond to
lines (a)–(c) of Fig. 1

transition line. These two issues cannot be dealt with by
the simple choices of partition functions used for the cal-
culations of this section, since the attractive part of the
interaction among hadrons or quarks is completely neg-
lected. To display certain solutions for the critical curve
within the context of the partition functions (7) and (21),
the position for the critical point has to be chosen. How-
ever, the position of the critical point has not been well
established by the various models used for its calcula-
tion. In [31], the critical point is set at T = 162±2MeV,
µB = 360±40MeV (displayed in Fig. 1, line (d)). This pos-
ition is determined by lattice QCD calculations by means
of a reweightening technique using three quark flavours

Fig. 3. Relative chemical equilibrium variable of the d quark,
γd, as a function of the relative chemical equilibrium variable
of the u quark, γu, at the QGP–hadron gas transition line for
the isospin symmetric case. Lines (a)–(c) correspond to lines
(a)–(c) of Fig. 1. The line γd = γu is also depicted

Fig. 4. Relative chemical equilibrium variable of the s quark,
γs, as a function of the chemical potential of the baryon at the
QGP–hadron gas transition line. Lines (a)–(c) correspond to
lines (a)–(c) of Fig. 1

and considerably reduced light quark masses, approaching
their physical values. In [32], with the use of two flavours
of quarks and a Taylor expansion of the baryon number
susceptibility, the critical point is set at lower values of
µB (µB/T � 1.1). In [33], the position of the critical point
is limited within a region in the T–µB plane using the
statistical bootstrap. In [34] a review of our understand-
ing of the position of the critical point in various models
can be found. It should be noted that the various calcula-
tions [31–33] are carried out assuming full chemical equi-
librium ({γ}= {1}) and, thus, cannot be applied to the
present situation, where partial chemical equilibrium is as-
sumed. In order to display a solution for the transition
curve, the chemical potential of the baryon at the criti-
cal point is chosen as µB,cr.p. = 360MeV in Figs. 1–5. This
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Fig. 5. Volume expansion ratio x= VHG/VQGP between pure
hadron and pure QGP phase at the same transition point,
as a function of the chemical potential of the baryon, which
was used in the calculations in Figs. 1–4. Lines (a)–(c) corres-
pond to lines (a)–(c) of Fig. 1. In lines (a) and (b) x1 = 1.06 at
λu1 = 14.2 and ε= 1.5 and in line (c) x1 = 1.07 at λu1 = 14.2
and ε= 1.15

choice does not present a preferable value, and any other
choice can be accommodated in the set of (1)–(6).
A form for the ratio of the volumes x has to be defined

as well. This form has to produce x= 1 at the critical point.
Moreover, it is chosen to produce a given value x1 at a spe-
cific value of λu1. A simple form that implements these
demands is

x= 1+

(
lnλu− lnλu,cr.p.
lnλu1− lnλu,cr.p.

)ε
(x1−1) , (26)

where the exponent ε regulates the curvature of the first
order transition line. For lines (a), x1 = 1.06 at λu1 = 14.2
and ε= 1.5 are chosen. Of course, any function of x can be
used, producing different first order transition curves. The
resulting first order transition lines are drawn with solid
lines in Figs. 1–4, while the respective critical points are
represented by solid circles.
The temperature T is displayed as a function of the

chemical potential of the baryon µB in Fig. 1. In the same
figure, line (d), which represents the phase transition line
as it is calculated from the lattice QCD in [31], is drawn for
comparison.
The relative chemical equilibrium fugacity γu is dis-

played as a function of µB in Fig. 2. This particular solu-
tion leads to the gradual suppression of γu as the chemical
potential of the baryon increases. The connection of γu and
γd, for the isospin symmetric solution, is depicted in Fig. 3.
The line γu = γd is also drawn for comparison. The relative
chemical equilibrium factor γs is drawn as a function of the
chemical potential of the baryon in Fig. 4.
In Fig. 5 the ratios of the volumes x, which are used in

the first order transition, are drawn against the chemical
potential of the baryon. The forms used for x are increas-
ing functions with respect to the chemical potential of the
baryon. The resulting first order transition lines produce

lower temperatures as the chemical potential of the baryon
increases, something which is expected.
One direct consequence of the simultaneous solution

of (1)–(6) is that the relative chemical equilibrium fugaci-
ties have values that depend on each other at every transi-
tion point. This is easily realised by inspecting the condi-
tion nSHG = 0 (for λs = 1). The solution of this condition
in the Boltzmann approximation is simplified by the as-
sumption that isospin symmetry leads to the approximate
solution λu = λd ≡ λq and γu = γd ≡ γq. Neglecting trivial
solutions, where γs = 0, the zero strangeness condition can
be solved to give

γs =
FK(T )−FH(T )γq(λq+λ−1q )

2FΞ(T )
. (27)

In (27), FK corresponds to the kaon mesons, FH to the
hyperon baryons (Λs and Σs) and FΞ to the Ξ baryons,
while the summation

Fa(T ) =
T

2π2

∑

i

gaim
2
aiK2

(mai
T

)
(28)

over all particles i of the same family is implied. In the
above relation, K denotes the modified Bessel function of
the second kind. It is evident from (27) that the increase
of the relative chemical equilibrium factor for the light
quarks, γq, and the increase of the light quark fugacity,
λq, leads, at constant temperature, to a decrease of the
factor γs.
It should be noted that the lattice QCD line (d) in Fig. 1

is calculated for γu = γd = γs = 1, whereas (a) is a curve in
amultidimensional space. In that sense Figs. 1–4 depict the
projections of the transitions curves on the corresponding
2-dimensional planes. The position where the transition
line (a) intersects with the temperature axis, T0, in Fig. 1,
depends on the values of the unknown parameters B and
v0. T0 corresponds to µu = µd = µs = 0 andmainly depends
on B and to a lesser extent on v0. T0 is found to increase
if B increases for v0 kept constant and, also, T0 increases
if v0 increases while B remains constant. Figure 6 includes
calculations without pentaquarks of T0 for a fixed value of
v0 = 2.83×10−8MeV−3 and varying values of B. As B in-
creases, while v0 is kept constant, T0 is driven to greater
values, but at the same time all the fugacities {γ} are sup-
pressed. In Fig. 6 T0 is plotted against the corresponding
γu (line (1)), γd (line (2)) and γs (line (3)). The values of γu
or γd are shown at the low horizontal axis and the γs values
at the upper horizontal axis. It is clear that the increase of
the pressure and the densities of the hadron gas that is due
to the increase of the temperature is compensated through
a reduction that is due to the suppression of {γ}.
In Fig. 7 the entropy to baryon number ratio (S/B) is

plotted for the values of the thermodynamical variables of
the transition curves (a) of Figs. 1–4. The upper line cor-
responds to the pure QGP phase and the lower one to the
pure hadronic phase. The part related to the first order sec-
tion of the transition (µB > 360MeV) is consistent with the
transition from a higher entropy phase (QGP phase) to the
lower entropy hadronic phase. However, the simple models
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Fig. 6. Transition temperature T0 for µu = µd = µs = 0 as a
function of corresponding γu (line (1), low axis), γd (line (2),
low axis) and γs (line (3), upper axis) for v0 = 2.83×10

−8

MeV−3 and varying values of B (B increases as T0 increases)

Fig. 7. The entropy to baryon number ratio calculated for the
thermodynamic variables of the transition line (a) depicted on
Figs. 1–5. The continuous line corresponds to the pure hadronic
phase and the slashed one to the pure QGP phase

used in the calculation cannot produce the continuity of
the entropy (which is related to the T -derivative of the par-
tition function) at the crossover region (µB < 360MeV).
The inclusion of the interaction in the quark–gluon parti-
tion function is crucial for producing a reduction of the en-
tropy of the ideal QGP phase, and thus for having a smooth
transition to the entropy of the hadron gas.

4 Inclusion of pentaquarks

Evidence has accumulated for hadrons containing five
quarks. These 5-quark states are the Θ+(1540) [35–39],
with I =0andquark contentuudds̄, and theΞ∗(1862),with
I = 3/2.The content of the statesΞ∗(1862) is ssddū (for the

state with electric charge Q = −2), ssudū (with Q = −1),
ssudd̄ (with Q = 0) and ssuud̄ (with Q = +1). The exis-
tence of the first three of the statesΞ∗(1862) has been con-
firmed [40, 41]. The motivation to investigate the effect of
the pentaquark states comes from the fact that these states
can alter (1)–(6), since they introduce additional hadronic
families, each of which is accompanied by completely differ-
ent functions between the fugacities of the systemcompared
to the ones in the already known families. This can be eas-
ily realised if the corresponding equation of (27) is written
down as follows:

γs =
[
FK(T )+FΘ(T )γ

3
q

(
λ2q+λ

−2
q

) (
λq+λ

−1
q

)

−FH(T )γq
(
λq+λ

−1
q

)] {
2
[
FΞ(T )+FΞ∗(T )γ

2
q

]}−1
.

(29)

The existence of the Θ hadron drives γs to higher values
with a strong dependence on γq and λq, whereas the inclu-
sion of the Ξ∗ states contributes to the decrease of γs.
The system of (1)–(6) is then solved with the inclusion

of the Θ+(1540) and Ξ∗(1862) states with the same parti-
tion functions for the HG and the QGP phase and for the
same parameters B, v0 as in the case without the inclu-
sion of the pentaquarks (lines (a) of the previous section).
The resulting curves are lines (b), shown in Figs. 1–4. The
adopted form of the ratio of volumes x again produces the
value x1 = 1.06 at λu1 = 14.2 (while ε= 1.5) and is plotted
in Fig. 5.
Lines (a) and (b) record the difference induced in the

transition curve by the inclusion of the pentaquarks, if
parameters B and v0 remain the same and x acquires
the same value at a given value of λu. However, none of
these parameters is known, and so the difference in the
transition curve cannot provide evidence for the existence
of pentaquarks. For this reason lines (c) are drawn in
Figs. 1–4. These lines represent a solution for the tran-
sition curve without the inclusion of the pentaquarks
but for a different choice of parameters (B remains the
same, v0 = 2.06×10−8MeV−3, x1 = 1.07 at λu1 = 14.2
and ε= 1.15). It is evident, now, that lines (b) (with pen-
taquarks included) and lines (c) (without pentaquarks)
almost coincide.

5 Application to heavy-ion data

The fact that the transition territory between the hadronic
and the QGP phase is restricted to a line in the space
of temperature and chemical potentials produces a direct
connection between the variables after the phase transition
and the corresponding ones before: they must coincide.
This is not the case when the transition territory is allowed
to occupy a surface. Then the connection between the ther-
modynamic variables of the hadronic and the quark phase
is broken. The system, as it crosses the transition territory
to enter the state of hadrons, loses its “memory” of the
plasma state.
In a system in which the hadronic state carries the

memory of its preceding state, one may use the freeze-out
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variables as a diagnostic tool for a primordial QGP phase.
Two assumptions are made at this point: (i) a quark–
gluon phase has been formed in a collision experiment, and
(ii) the chemical freeze-out occurs right after the transition
to the hadronic phase.
If assumptions (i) and (ii) are valid, then the freeze-

out thermodynamic variables have to fulfill the con-
straints (1)–(6). If, on the contrary, either (i) or (ii) does
not take place, then the restriction on the freeze-out con-
ditions of the system is diminished only to

nBHG(T, {λ, γ}) = 2βnQHG(T, {λ, γ}) , (30)

nSHG(T, {λ, γ}) = 0 , (31)

a set of constraints that will be referred to from now on as
set A.
The thermodynamic variables are extracted through

a fit of the experimentally measured particle multiplicities
or ratios to a statistical model. Such a technique has been
successful. If now the additional constraints (1)–(6) are im-
posed, the question that arises is whether a successful fit
is also produced or the restrictions that these constraints
imply are inconsistent with the data.
These ideas will now be used to analyse the freeze-out

variables of four heavy-ion experiments. The application
of (1)–(6) requires knowledge of the partition functions for
the hadron and the quark phase. The particular functions
used in Sects. 3 and 4 to demonstrate the existence of a so-
lution include the arbitrariness in the choice of the pa-
rameters B, v0 and the quantity x. Since it is unwanted
for the extracted variables to depend on the choice of un-
known parameters, it is better to form and apply a subset
of constraints that are completely independent from these
parameters.
When the system of (1)–(6) is valid, (3)–(6) can equiva-

lently be rewritten as

nBHG(T, {λ, γ}) = 2βnQHG(T, {λ, γ}) , (32)

nBQGP(T, {λ, γ}) = 2βnQQGP(T, {λ, γ}) , (33)

nSHG(T, {λ, γ}) = 0 , (34)

nSQGP(T, {λ, γ}) = 0 . (35)

Equation (32) results from (2), (3) and (5), whereas (34) is
due to (4) and (6). For the particular model [28, 29], which
has been used to include the Van der Waals volume cor-
rections, the only way for (32) and (34) not to depend on
the unknown hadronic proper volumes is to use the Boltz-
mann approximation and to set all the volumes equal to
the same parameter v0. Then the hadronic densities may
acquire the form of (20). The function f , which is the only
term inwhich v0 is present, then cancels from (32) and (34).
Equations (32)–(35) (referred to as set B) now form a set of
equations that do not depend on the parameters v0 for the
particle size, B (MIT bag constant) nor on the ratio x ap-
plicable to the first order transition line. It is easily checked
that the same is true for the set of (30)–(31), forming set A.
Equation (35) deserves special attention, since it is eas-

ily solved to give λs = 1. Indeed in [42, 43] lattice calcula-
tions have been carried out to evaluate the quantum num-

ber susceptibility,

CBS = 1+2C(us)/s = 1+
1

χs

T

V

∂2 lnZ

∂µu∂µs

= 1+
1

χs

λuλs

V

∂2 lnZ

∂λu∂λs
.

It is found that CBS = 1 immediately after the system
acquires the transition temperature Tc and remains con-
stant at the unit value for all higher temperatures. There-
fore, above Tc the quantum numbers are carried out by
quark-like quasiparticles. The previous equation then gives
∂2 lnZ
∂λu∂λs

= 0, which in turn means that products of the fu-

gacity λs with other quark flavour fugacities do not ap-
pear. This suffices to give as a solution to the zero net
strangeness equation (35) λs = 1 for any kind of partition
function that may be used in place of (21). Thus, the solu-
tion λs = 1, to be used in the following as part of set B, is
model independent.
On the contrary, (1) and (2) are model dependent and

contain unknown parameters. However, if the freeze-out
parameters are determined, they can be inserted in (2) to
determine v0 (assuming that x is known), and then (1) can
be used to determine B. This task serves to show that (1)
and (2) have a real solution, and it contributes to the over-
all consistency of the technique.
In order to extract the thermodynamic variables of the

chemical freeze-out conditions of heavy-ion experiments,
a fitting procedure has to be carried out on the measured
hadronic multiplicities. The theoretical form for the num-
ber of particles of type i, N thi , is according to (20)

N thi = V ni = V f(v0;T, {λ, γ})n
pt
i (T, {λ, γ}) . (36)

The term V f , which includes v0, is common, now, to all
multiplicities. Thus, the ratio of every two multiplicities
with volume corrections equals the ratio of the respective
multiplicities calculated for the ideal case. This attribute
leads to the desirable result that the extracted variables
(T, {λ, γ}) do not depend on the unknown parameter v0.
This parameter only appears in the term V f , and its know-
ledge is needed only if the volume V is to be evaluated.
Also, it would not be so prudent to leave v0 as an open
variable to be evaluated along with the other variables as
a result from the fit on the multiplicities. Since v0 is a pa-
rameter in the description of the hadron gas, common to
all cases, it would be undesirable for it to acquire differ-
ent values from the fits of different experiments. This is an
additional reason for the use of the Boltzmann approxima-
tion and only one parameter v0 in the model for the volume
corrections.
In the following, the freeze-out variables for the ex-

periments S+S [44–53], S+Ag [54–60] (NA35) at beam
energy 200AGeV, Pb+Pb [61–65] (NA49) at beam en-
ergy 158AGeV and Au+Au [66–73] (STAR) at

√
sNN =

130GeV will be analysed. The data used are listed in
Table 1 and they are in all cases full phase space multi-
plicities, except from the RHIC data, which are measured
in midrapidity. The experiments to be analysed are chosen
because, according to previous analyses, they do not pro-
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Table 1. The full phase space multiplicities from the collision experiments S+S (NA35), S+Ag
(NA35) and Pb+Pb (NA49), as well as the midrapidity multiplicities and ratios from Au+Au
(STAR), used in the fits

S+S S+Ag Pb+Pb Au+Au

K+ 12.5±0.4 Ks
0 15.5±1.5 Np 362±5.1 Λ 17.20±1.75

K− 6.9±0.4 Λ 15.2±1.2 K+ 103±7.1 Λ 12.15±1.25
Ks
0 10.5±1.7 Λ 2.6±0.3 K− 51.9±3.6 Ξ− 2.11±0.23

Λ 9.4±1.0 p 2.0±0.8 Ks
0 81±4 Ξ

+
1.77±0.19

Λ 2.2±0.4 p−p 43±3 φ 7.6±1.1 Ω+Ω 0.585±0.150
p 1.15±0.40 B−B 105±12 Λ 53±5 p 26.37±2.60

p−p 21.2±1.3 h−(∗) 186±11 Λ 4.64±0.32 p 18.72±1.90
B−B 54±3 Ξ− 4.45±0.22 Ks

0 36.7±5.5

h−(∗) 98±3 Ξ
+

0.83±0.04 φ 5.73±0.78
Ω 0.62±0.09 K∗0 10.0±2.70

Ω 0.20±0.03 π+(∗) 239±10.6

π+(∗) 619±35.4 π−(∗) 239±10.6

π−(∗) 639±35.4 K+/K− 1.092±0.023

K
∗0
/K∗0 0.92±0.27
Ω/Ω 0.95±0.16

(∗) This multiplicity has not been used in the fits where the pions are excluded.

duce a high chemical potential of the baryon at freeze-out,
and so they are probably at the crossover area, allowing
one to set x= 1. The technique, though, can be applied to
the first order transition case, determining the freeze-out
variables, since the equations of set B do not depend on
x, but then the parameters v0 and B cannot be uniquely
determined. Thus, all the extracted variables that will be
presented, except v0 and B, remain unchanged if the sys-
tem undergoes a first or higher order transition.
The theoretical calculation of the particle multiplicity

necessary to perform a fit to the experimental data has
been carried out with the use of (36). The feeds from the
decay of resonances have been included. The value of β is
set to 1 in the case of S+S, 1.1 in the case of S+Ag, 1.27
for Pb+Pb and 1.25 for Au+Au.
In Table 2 the freeze-out variables are extracted with-

out assumption (i) or (ii) (constraints of set A), whereas in
Table 3a and b assumptions (i) and (ii) are assumed, thus
applying the constraints of set B. Another issue concerning
the analysis is the observation that the inclusion of the pion
multiplicity deteriorates the fit [14, 15, 74].1 Since the qual-
ity of the fitting procedure is of importance in evaluating
the results, and a bad fit, when the constraints of set B are
imposed, may be partly due to the presence of the multi-
plicity of the pion, two fits are performed in case of set B;
one with all the multiplicities included (Table 3a) and one
without the multiplicities that contain pions (Table 3b).
This makes clear the effect of the pion multiplicities in the
overall procedure.
The first observation that can be made by comparing

the first and the second part of every table is that the inclu-

1 The presence of excess of pions, though, can be connected
with a primordial high entropy phase or with a phase with the
chiral symmetry restored [75, 76].

sion of pentaquarks has a negligible effect on the evaluated
parameters or the quality of the fit. So one can safely draw
equivalent conclusions by performing the analysis with the
pentaquarks or without them.
For the S+S and S+Ag data the fit with set B is

of medium quality (χ2/dof = 2.98 and 1.93, respectively)
when the pions are present. This is not far worse, though,
than the fit in the case of set A. When the pions are
excluded, the fit with set B turns out to be very good
(χ2/dof = 0.469 and 0.0662, respectively), while the tem-
perature remains at acceptable values, proving these cases
to be completely compatible with a primordial quark–
gluon phase. Another observation is that the imposition of
set B with respect to set A, in every case, does not produce
a dramatic change in the quality of the fit.
In the case of Pb+Pb the fit is relatively good with the

imposition of set A (χ2/dof = 2.56), but the imposition of
set B severely worsens the quality of the fit. The situation
cannot be remedied with the exclusion of pions, and χ2/dof
remains at the value of 18.0–18.2. The conclusion to be
drawn from the bad quality of the fit with the imposition of
the constraints of set B is that the data of this experiment
are not compatible with assumptions (i) and (ii). Indeed,
as it is evident from Table 3a and b, the freeze-out pos-
ition of Pb+Pb is driven at µB = 701–776MeV when set
B is imposed. This is almost twice the higher value of the
chemical potential of the baryon of the three other experi-
ments. At this high density, it is not certain whether the
chemical freeze-out occurs immediately after the system
has crossed the transition line or at a point further inside
the hadronic phase. The dramatic change in the quality of
the fit between the cases of set A and B should be noted as
well.
Also the freeze-out temperature in the case of setB is un-

realistically high and rises enormously with respect to the
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Table 2. The results of fits on the S+S (NA35), S+Ag (NA35), Pb+Pb (NA49) and Au+Au
(STAR) data with the imposition of the set of constraints A, without and with the inclusion of
the pentaquark states. In the fits all the multiplicities have been included. The fits on the STAR
data have been performed with the temperature held fixed at the given value using Bose or Fermi
statistics.

set A, fit with all
S+S S+Ag Pb+Pb Au+Au

No pentaquarks

χ2/dof 6.18/3 = 2.06 4.23/1 = 4.23 17.90/7 = 2.56 8.96/9 = 0.996
T (MeV) 207 ± 26 238 ± 42 196 ± 13 154(fixed)
λu 1.78 ± 0.14 1.78 ± 0.18 1.729 ± 0.058 1.081 ± 0.011
λd 1.325 ± 0.053 1.464 ± 0.095 1.639 ± 0.041 1.0657 ± 0.0094
λs 1.016 ± 0.028 1.018 ± 0.028 1.166 ± 0.011 1.0190 ± 0.0035
γu 0.54 ± 0.16 0.45 ± 0.15 0.431 ± 0.080 1.065 ± 0.082
γd 1.05 ± 0.23 0.68 ± 0.21 0.565 ± 0.090 1.77 ± 0.23
γs 0.50 ± 0.12 0.332 ± 0.087 0.364 ± 0.062 1.427 ± 0.078
V fT 3 177 ± 33 357 ± 77 3760 ± 370 442 ± 73
µB (MeV) 236 ± 37 318 ± 68 301 ± 23 31.5 ± 3.2

With pentaquarks

χ2/dof 6.33/3 = 2.11 4.16/1 = 4.16 17.87/7 = 2.55 8.99/9 = 0.999
T (MeV) 207 ± 26 237 ± 42 196 ± 13 154(fixed)
λu 1.78 ± 0.13 1.78 ± 0.18 1.729 ± 0.058 1.081 ± 0.011
λd 1.327 ± 0.053 1.461 ± 0.094 1.638 ± 0.041 1.0660 ± 0.0094
λs 1.019 ± 0.028 1.021 ± 0.028 1.166 ± 0.011 1.0195 ± 0.0035
γu 0.54 ± 0.16 0.45 ± 0.15 0.430 ± 0.079 1.065 ± 0.083
γd 1.04 ± 0.23 0.69 ± 0.21 0.565 ± 0.089 1.78 ± 0.23
γs 0.49 ± 0.12 0.334 ± 0.088 0.364 ± 0.061 1.428 ± 0.079
V fT 3 177 ± 33 356 ± 76 3760 ± 368 441 ± 74
µB (MeV) 237 ± 37 317 ± 68 301 ± 23 31.7 ± 3.2

case of set A. For consistency reasons it should be recorded
that a fit similar to the one presented in Table 2 for Pb+Pb
has been performed in [77]. The difference in the extracted
variables is due to the inclusion of theΩ andΞ in the fit pre-
sented here. If theΩ andΞ are excluded but the fit is carried
out in the Boltzmann statistics (without the pentaquarks),
the extracted variables are found to be T = 167MeV, λu =
1.71, λd = 1.59, λs = 1.19, γu = 0.637, γd = 0.901 and γs =
0.559. If Bose or Fermi statistics is used in the fit without
the Ω and Ξ, the freeze-out point turns out to lie close to
the Bose singularity, producing then a considerable change
compared to the result in Boltzmann statistics. The vari-
ables are then T (fixed) = 140MeV, λu = 1.65, λd = 1.65,
λs = 1.20, γu = 1.48, γd= 1.72 and γs= 1.36; these are close
to the ones recorded in [77]. However, if theΩ andΞ are ex-
cluded andalsoBose orFermi statistics is used in the fitwith
set B, the extracted variables have a negligible difference
from the ones recorded in Table 3. The extracted variables
(for the fitwith all themultiplicities) are thenT = 434MeV,
λu = 1.71,λd = 1.77,γu = 0.269,γd = 0.289 and γs = 0.198.
Since the imposition of setB is the primary aimof this work,
no reason is found for the exclusion of the multiplicities of
theΩ andΞ.
The findings concerning the S+S and S+Ag data

are also in agreement with the proximity of the chemical
freeze-out points of these experiments to the statistical
bootstrap critical line that was found in [14, 15]. On the

contrary, the freeze-out point of Pb+Pb was not found to
possess such an attribute in [78], which is also in agreement
with the present results.
In the case of RHIC and for set A the minimum value of

χ2 is generated for variables close to the Bose singularity.2

This causes the differences between the results obtained
with Boltzmann and Bose or Fermi statistics to increase.
For this reason the results of the fit for the Au+Au case
of Table 2 are presented using Bose or Fermi statistics
(though (20) and (36) are valid only approximately in such
a case [28, 29]). This allows for a direct comparison with
similar fits, see e.g. [77], and causes no problem in the ex-
traction of the parameters v0 and B, because these pa-
rameters are not evaluated for the set of constraints A.
Since the minimisation routine becomes rather inefficient
very close to the Bose singularity, the temperature is held
constant close to (but not exactly at) the value that pro-
duces the minimum χ2, and then the rest of the vari-

2 In [79] another result for the extracted variables for case of
set A, containing a higher temperature and suppressed {γ}, was
presented. These variables correspond to another local mini-
mum of χ2, which, although it produces a higher value of χ2

than the one produced here, is away from the Bose singularity
and, thus, easily accessible for the minimisation routines. This
choice in [79] was made since fits with set A in the case of Au+
Aumainly serve to show the reduction of the χ2/dof value when
the pions are excluded.
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Table 3. The results of fits on the S+S (NA35), S+Ag (NA35), Pb+Pb (NA49) and Au+Au
(STAR) data with the imposition of the set of constraints B, without and with the inclusion of the
pentaquark states. In part (a) all the multiplicities have been included in the fit and in part (b) the
multiplicities that contain pions have been excluded from the fit

(a) set B, fit with all
S+S S+Ag Pb+Pb Au+Au

No pentaquarks

χ2/dof 14.9/5 = 2.98 5.78/3 = 1.93 162/9 = 18.0 42.3/11 = 3.85
T (MeV) 245 ± 19 275 ± 30 436 ± 21 344 ± 15
λu 1.537 ± 0.025 1.613 ± 0.034 1.668 ± 0.019 1.082 ± 0.011
λd 1.535 ± 0.025 1.638 ± 0.036 1.728 ± 0.022 1.086 ± 0.011
γu 0.574 ± 0.085 0.456 ± 0.078 0.2724 ± 0.0093 0.349 ± 0.016
γd 0.576 ± 0.086 0.470 ± 0.080 0.293 ± 0.010 0.381 ± 0.017
γs 0.394 ± 0.063 0.308 ± 0.051 0.1878 ± 0.0065 0.322 ± 0.016
V fT 3 155.1 ± 5.3 282.9 ± 9.1 684 ± 33 382 ± 14
µB (MeV) 315 ± 26 403 ± 46 701 ± 35 84.1 ± 8.7
v0 (10

−8MeV−3) 3.48 ± 0.66 3.48 ± 0.50 2.150 ± 0.076 2.781 ± 0.047

B1/4 (MeV) 321 ± 23 352 ± 36 534 ± 25 431 ± 18

With pentaquarks

χ2/dof 15.1/5 = 3.03 5.79/3 = 1.93 162/9 = 18.1 42.4/11 = 3.85
T (MeV) 247 ± 18 277 ± 29 438 ± 21 345 ± 15
λu 1.537 ± 0.025 1.613 ± 0.034 1.668 ± 0.019 1.082 ± 0.011
λd 1.536 ± 0.025 1.638 ± 0.036 1.728 ± 0.022 1.086 ± 0.011
γu 0.567 ± 0.081 0.452 ± 0.076 0.2720 ± 0.0093 0.349 ± 0.016
γd 0.569 ± 0.082 0.466 ± 0.078 0.293 ± 0.010 0.380 ± 0.017
γs 0.391 ± 0.061 0.306 ± 0.050 0.1876 ± 0.0065 0.322 ± 0.016
V fT 3 151.9 ± 5.4 277.4 ± 8.6 677 ± 32 381 ± 14
µB (MeV) 319 ± 25 406 ± 45 704 ± 35 84.3 ± 8.7
v0 (10

−8MeV−3) 3.57 ± 0.59 3.51 ± 0.45 2.136 ± 0.076 2.783 ± 0.046

B1/4 (MeV) 324 ± 23 355 ± 36 536 ± 25 432 ± 18

(b) set B, fit with no πs
S+S S+Ag Pb+Pb Au+Au

No pentaquarks

χ2/dof 1.88/4 = 0.469 0.132/2 = 0.0662 128/7 = 18.2 10.4/9 = 1.16
T (MeV) 192 ± 21 207 ± 31 443 ± 25 210 ± 10
λu 1.603 ± 0.042 1.661 ± 0.043 1.746 ± 0.024 1.074 ± 0.010
λd 1.599 ± 0.042 1.693 ± 0.046 1.817 ± 0.027 1.080 ± 0.011
γu 0.97 ± 0.31 0.78 ± 0.31 0.261 ± 0.011 0.77 ± 0.10
γd 0.98 ± 0.31 0.80 ± 0.31 0.279 ± 0.011 0.83 ± 0.10
γs 0.87 ± 0.32 0.61 ± 0.26 0.1983 ± 0.0077 0.89 ± 0.13
V fT 3 95 ± 27 202 ± 63 626 ± 35 261 ± 27
µB (MeV) 271 ± 31 324 ± 50 776 ± 47 47.1 ± 5.2
v0 (10

−8MeV−3) 3.63 ± 1.79 3.61 ± 2.14 2.068 ± 0.092 2.90 ± 0.74

B1/4 (MeV) 271 ± 28 284 ± 41 542 ± 30 289 ± 14

With pentaquarks

χ2/dof 1.53/4 = 0.383 0.130/2 = 0.0651 128/7 = 18.3 10.5/9 = 1.17
T (MeV) 194 ± 18 215 ± 27 445 ± 25 213 ± 11
λu 1.607 ± 0.041 1.664 ± 0.044 1.746 ± 0.024 1.075 ± 0.010
λd 1.602 ± 0.041 1.693 ± 0.046 1.817 ± 0.027 1.080 ± 0.011
γu 0.97 ± 0.28 0.73 ± 0.24 0.260 ± 0.010 0.735 ± 0.091
γd 0.98 ± 0.28 0.75 ± 0.24 0.279 ± 0.011 0.80 ± 0.10
γs 0.89 ± 0.30 0.57 ± 0.20 0.1982 ± 0.0076 0.85 ± 0.12
V fT 3 90 ± 25 203 ± 54 620 ± 34 265 ± 27
µB (MeV) 275 ± 28 335 ± 45 780 ± 46 48.3 ± 5.3
v0 (10

−8MeV−3) 3.98 ± 1.45 3.79 ± 1.58 2.055 ± 0.092 3.01 ± 0.72

B1/4 (MeV) 274 ± 25 291 ± 35 544 ± 30 293 ± 14
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ables are determined in order to minimise χ2. The number
of degrees of freedom, though, is recorded equal to the
value that this number would acquire if no variable were
held fixed during the minimisation process, aiming to have
a comparison with the fits of case B, these being treated
on an equal footing. The value of χ2/dof is 0.996. Simi-
lar results are obtained when set B is imposed, but now
the Boltzmann approximation proves to be efficient. The
fit in the presence of pions is not of so good a quality
(χ2/dof = 3.85), and the temperature acquires too high a
value. The fit turns out to be quite good, though, when
the pions are excluded (χ2/dof = 1.16), and the tempera-
ture remains at acceptable values, so the thermodynamic
parameters are compatible with a QGP phase and an im-
mediate freeze-out after the transition to the hadronic
phase.
Two additional remarks are in order. The first one con-

cerns the justification of the use of the Boltzmann approx-
imation. In [79] similar fits were performed with the use
of the Bose or Fermi statistics. In all the fits, except for
Au+Au in Table 2, it is easily seen that the difference be-
tween the two statistics is small. Since the main objective
is to find out whether the experiments are compatible with
the set of constraints B, and the parameters v0 and B can-
not be calculated in the case of set A, no problem is caused
even for the only case in which there is a considerable dif-
ference between the two statistics. The second one is that
the fugacities γu, γd are in strong correlation with the tem-
perature. During the fitting procedures, it is found that
the increase of temperature is connected, in general, to the
suppression of γu, γd. When the values of γu, γd are locked
near the unit value, the fitted temperature is lower com-
pared to the temperature that results from a fit in which
the γu, γd acquire, through a minimisation procedure, low
values.
The extracted parameters in the case of set B are in-

serted to (1) and (2) and the parameters v0 and B
1/4 are

also determined. In the determination of the error of v0, the
errors from all six variables T, λu, λd, γu, γd, γs contribute.
Especially, the error of the temperature produces a sub-
stantially higher relative error in v0. For this reason, the
recorded error of v0 in Table 3 is calculated with half the er-
rors of the thermodynamic variables. It is interesting that
in the cases of S+S, S+Ag and Au+Au (without the pi-
ons), which have been proven to be compatible with set
B, all the calculated values of v0 and B

1/4 are close, com-
patible with a unique value for these parameters. On the
contrary, the Pb+Pb case produces values of v0 and B

1/4

that seem to have less connection with the rest of the cases.
The necessity of the expansion of the fugacity sector

with the partial equilibrium fugacities is also revealed with
the application of the present technique. If these fugacities
are set to γu = γd = γs = 1, then the sector of the phase
space that is compatible with the QGP–hadron transition
is severely limited. In such a case, if a similar fit to the
one with set B is performed, apart from the fact that (32)
and (33) cannot be accommodated, the fit turns out to be

worse. The result in the case without the pions and without
pentaquarks is then χ2/dof = 0.605, 1.05, 27.6 and 1.81 for
S+S, S+Ag, Pb+Pb and Au+Au, respectively. Then in
the case of Au+Au the compatibility with set B turns out
to be dubious.
Another general observation, which can be made on

Table 3, is that in the cases that are compatible with set B
(S+S, S+Ag and Au+Au), the inclusion of the pions in
the fits produces a dramatic increase in the value of χ2/dof
relative to the fits without the pions. This is checked by
comparing the value of χ2/dof in Table 3b and a. Although
in the present work the fugacities γu and γd are used, which
describe off chemical equilibrium effects, and the pion con-
tains u and d quarks, this dramatic increase in χ2/dof when
the pions enter the fit persists. Thus, for such cases, the
fugacities γu and γd cannot improve the fit to acceptable
limits and reveal that an excess of pions is present.
Gathering the observations made in this section, what

is found is that the freeze-out conditions of some experi-
ments are compatible with a QGP phase and an immediate
chemical freeze-out after crossing the transition line (con-
straints B). This is revealed by the fact that the imposi-
tion of constraints B produces fits with acceptable values
of χ2/dof and temperature. The opposite is true for the
experiments incompatible with assumptions (i) or (ii). In
such cases the imposition of constraints B leads to high
values of χ2/dof and temperature, though these values are
acceptable when only constraints A are imposed. Also, the
cases compatible with set B present an excess in the pion
multiplicity that cannot properly be fitted by the γu and γd
fugacities. This is seen by a great increase in the value of
χ2/dof when the pions are included in the fit in comparison
to the fits without pions.

6 Conclusions

Although two different partition functions are used for the
description of the quark and hadronic side of matter, it
is possible to preserve the continuity of all chemical po-
tentials and, of course, temperature and pressure (Gibbs
equilibrium conditions) at the transition region, which is
confined to a curve. Also, all the constraints imposed by
the conservation laws of quantum quantities can be ap-
plied, leading, at the same time, to a non-trivial solution
of the thermodynamic variables for a three quark flavour
system. The key issue for the success of this project is the
expansion of the fugacity sector of the available variables,
and the relative chemical equilibrium variables already in-
troduced can be used to serve this purpose.
Despite the fact that the space of the thermodynamic

variables is extended, the restrictions imposed on the tran-
sition points produce relations among these variables.
A part of these relations, in a simple form, is expressed
in (27) or (29).
The restrictions on the freeze-out conditions, imposed

by the existence of a quark–gluon state in the early stages
after a collision experiment and a freeze-out occurring just
after the phase transition, can be applied to every case in
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which the thermalisation of the produced hadrons has been
proven. They can serve to separate the experiments com-
patible with the QGP state from those that may not be.
The expansion of the fugacity sector with the partial equi-
librium fugacities, though, augments the part of the phase
space allowed by such constraints.
The whole methodology that was presented here can be

used for every grand canonical partition function adopted
for the description of the HG or QGP phase. The inclu-
sion of the interaction is crucial for the prediction of the
critical point and the volume expansion ratio, which could
not be determined by the models used in this work. At
the moment, lattice calculations have led to the determin-
ation of the quark–gluon equation of state with three quark
flavours at finite chemical potential of the baryon [31, 80].
It would be interesting, though, if these calculations could
be extended with the inclusion of the relative chemical
equilibrium variables for light and strange quarks, allowing
for matching with the existing hadron gas models. For the
hadronic side of matter the inclusion of the attractive part
of interaction can be incorporated via the statistical boot-
strap [12–15], in which the prediction of a critical point is
also possible [33, 81, 82]. The incorporation of the full set
of parameters γi into these studies would allow for a more
precise matching with a primordial quark phase.
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