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Abstract. A method is developed to consistently satisfy the Gibbs equilibrium conditions between the
quark—gluon and hadronic phase, although each phase has been formulated in separate grand canonical par-
tition functions containing three quark flavours. The sector in the space of thermodynamic variables where
the transition takes place is restricted to a curve, according to the phase diagram of QCD. The conserva-
tion laws of quantum numbers are also imposed on the transition curve. The effect of the inclusion of the
pentaquark states is considered. The data from S+ S, S+ Ag (SPS) and Au+ Au (RHIC) are found to be
compatible with the formation of a QGP phase and the occurrence of the chemical freeze-out immediately
after crossing the transition line, but the data from Pb+Pb (SPS) are not.

PACS. 12.40.Ee; 05.70.Fh; 12.38.Mh; 24.10.Pa

1 Introduction

Quantum chromodynamics is universally accepted as the
theory of the strong interactions. Within the context of this
theory the quark—gluon plasma phase receives an accurate
description. However, the formation of the hadronic phase,
which is the final state of any possible primordial QGP
state, still remains an open problem in view of QCD. On
the other hand, the hadronic multiplicities emerging from
heavy-ion collisions have been extensively and successfully
predicted by statistical models using a handful of thermo-
dynamical parameters [1-15]. So the use of two separate
models for the QGP and the hadron phase, called a hadron
gas (HG), offers a complementary approach.

Effective model calculations based on QCD predict that
the transition between QGP and the hadronic phase is
a first order one at high baryon densities (depicted by
a critical line on the (T, up) plane), while it is of higher
order at low or zero baryon densities (crossover). The end
point of the first order transition line is a critical point [16—
18]. The transition points must be restricted to a curve on
the phase diagram of temperature and chemical potential
of the baryon. In view of this aspect any models to be used
for the description of QGP and HG have to be matched
properly at the transition between the two phases.

The aim of this work is to trace the sector of the space
of thermodynamic variables where the QGP-hadron tran-
sition occurs, with the following requirements.

(a) Any mixed phase formed in the first order part of the
transition must occupy only a curve in the space of the
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thermodynamic variables. This requirement is even
stronger in the crossover area where a mixed phase
does not exist.

(b) The Gibbs equilibrium conditions have to be satis-
fied, which amount to Tqgp = Tug for thermal equi-
librium, Pogp = Puc for mechanical equilibrium and
{r}qap = {p}uc for chemical equilibrium, where {y}
stands for the set of chemical potentials used in the
description of the two phases.

(c) All the conservation laws of quantum numbers like
baryon number B, electric charge ), strangeness S,
etc. have to be satisfied at every point on the tran-
sition line, in a way that they could be extended
for every number of flavours that are present in the
system.

One is confronted with these problems every time sepa-
rate partition functions are used for the two phases, but the
simultaneous fulfillment of the above conditions has not
been achieved. Among the numerous examples that exist,
in [19], where only light, identical quarks are used (v =d =
q), the curves of equal pressures are made to approximately
coincide by the choice of the external parameters B and as,
something which does not allow for matching when other
flavours are introduced. In [20] the strange fugacity A is
discontinuous at the HG—QGP transition, and the conser-
vation of baryon number can only be accommodated in the
case of a first order transition. In [21] the strange chem-
ical potential p; is also discontinuous. In [22] only ¢ quarks
are considered, and the requirement of the continuity of
the chemical potentials and conservation of baryon num-
ber leads to a mixed phase which occupies a surface and
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not a line on the (7, up) plane. The same is true in [23—
25] where also s quarks are included. In [26] there is an
analogous situation as in [22] with a critical line at the
(T, np) plane, but the conservation of baryon number is
not considered. In [27] the ¢ and s quark chemical poten-
tials are continuous, but baryon number and strangeness
of the system are not kept constant during hadronisation,
since hadrons evaporate from the QGP. The considerations
of [20—27] are consistent with a first order transition but
cannot be valid at the crossover region. In this work all
the thermodynamic variables and the pressure will be kept
continuous at the transition line (in contrast with [19-21]),
and the first order part of the transition will be presented
by a line on the (T, up) plane (different from [22—25]), and
no evaporation of hadrons will be assumed from the system
(different from [27]).

Let us consider the requirements that a system with
Ny quark flavours has to satisfy. Every conservation law
accounts for two equations to be fulfilled. One sets the
value of the quantum quantity, e.g. (B)qap = b;, and the
other one assures the conservation at the phase transi-
tion, e.g. (B)qap = (B)ua. The total number of equations
that must hold is, thus, 2Ny + 1 (the unit accounts for the
equality of pressures). Assuming the existence of full chem-
ical equilibrium, every quark flavour introduces one extra
fugacity in the set of thermodynamical variables, which,
with the inclusion of volume and temperature, amount to
Ny +2. At the crossover region, the surviving free param-
eters required to fulfill the necessary equations decrease
to Ny +1, because of the equality of densities and conse-
quently the equality of volumes between the two phases
(Voep = Vug). At the first order transition line the free
parameters are Ny + 2, since now Vqap # Vag. It is evi-
dent, then, that the necessary 2N; +1 conditions can be
fulfilled only at the first order part of the transition and
only when there is one flavour present, Ny =1, or when
the u and d quarks are considered identical (¢ quarks,
described by a single chemical potential pq). It has to
be emphasised that the conditions like (B)qap = b; have
to be satisfied in order to have a whole line of transi-
tion points. If these equations are dropped, then we are
left with Ny +1 equations, which can be solved but re-
sult in a unique point in the space of the thermodynamical
parameters.

2 Expanding the fugacity sector

It is clear that in order to satisfy 2NNy 41 relations, every
flavour has to be accompanied by two fugacities instead
of one. The multiplicity data emerging from heavy-ion
collisions suggest that the thermalised hadronic system
has not achieved full chemical equilibrium. First the par-
tial chemical equilibrium factor of the strangeness v, had
been introduced [2,3] and used extensively to model the
data [4-8]. Also a similar factor for the light quarks v, was
introduced [9] and used in certain analyses [10,11]. Here
the light v and d quarks will be accompanied by separate
fugacities 7., v4. A factor ; controls the quark density
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nj+mn; [4] in contrast with the usual fugacity );, which
controls the net quark density n; —n;. These additional
fugacities can serve the purpose of satisfying the neces-
sary equations at the transition point, as well as preserving
the continuity of the chemical potentials between the two
phases.

A system with three flavours (u, d and s quarks) is de-
scribed by the set of thermodynamical variables (T, Ay, Vu,
)\d7 Yd, )‘sv IYS) = (T7 {)‘7 IY}) Setting T = VHG/VQGP7 the set
of equations to be satisfied at every phase transition point
will be

Poep (T, {N}) =
nBQGP T {)‘77}

( P (T:AMAD),
(
NQqap (T {/\77}
(
(
(

= INByg (T7 {)‘v '7}) )
= INQug (T, {>‘7 7}) )
= INSyq (T7 {/\7 7}) s
= 2/3nQQGP (T, {1,

nSQGP T {/\77}
nBQGP T {)‘ Py}
nSQGP T {)‘ Py}

~— — — — — —

where the n denote the densities. For isospin symmetric
systems one has to set 3 =1 in (5). Equations (1)—(6) only
have one free variable, necessary to produce a whole tran-
sition line in the phase diagram. At crossover, we have
x =1, whereas at the first order transition line the inequal-
ity Vqap # Vg preserves the survival of = as an extra
variable.

3 A solution for the transition curve

The above considerations are applicable to every partition
function connected to the hadronic and the quark state. It
is interesting, though, to check whether they can produce
a real solution for the transition curve, i.e. that the sys-
tem of (1)—(6) is not impossible. For this reason, two simple
models will be employed. For the hadron gas phase only
the repulsive part of the hadronic interaction will be taken
into account through a Van der Waals treatment of the
system volume. In order to have a thermodynamically con-
sistent description, the grand canonical partition function
of a system containing h hadronic species, each of which is
associated with the chemical potential u;, may be written
down in the form [28, 29]

0o 0o h
_— DRI LL/LN/L
=5 Y [Tew ()
N1=0  Np=0i=1
x ZP(T, N, V)O(V). (7)

Zug (T7 {ﬂ}a V)

In (7) ‘pt’ refers to the ideal system of point particles, i.e.
to the absence of repulsive interactions. The available vol-
umeis V=V -— Z?:l v; N;, where v; is the proper volume
of the i species and V; the number of ¢ particles present in
the system. The 6 function preserves the partition function
from negative contributions of the volume and is dealt with
by a Laplace transformation, which causes the pressure to
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acquire the form

h
Puc (T, {u}) = Pig (T, {i}) = Z PPUT, i), (8)

where the quantities fi; are connected to the chemical po-
tentials u; and the system pressure

fii = pi —viPac(T, {p}) - 9)

In the following the Boltzmann approximation will be
used. Also, the proper volumes of all the particle species
will be taken equal, so

V==V, =170. (10)

The need for these two simplifications will become ap-
parent in Sect. 5, where the experimental data will be ad-
dressed. The ideal partition function of the point particles
1 is then

= (8 antr ()
In ZP(T, pi, V) exp(T V27T291m1K2 T

= exp (’;) Ve(T), (11)

where the g; are degeneracy factors due to spin and isospin,
and K> is the modified Bessel function of the second kind.
The pressure of the particles of i species will then be

In Zzpt(T7 His V)

PPY(T, 1) =T
v (T ) v

_ i

=Texp <T) e(T).
(12)

With the use of (9), (10) and (12) it is found that

voPua

PP ) =exp (<00 ) P T, (13

a relation that can be inserted into (8) to give

h
Pua(T, () = exp |- T VD S P .

(14)
Then the particular density n; nc can be calculated
from (14) as

OPuc (T, {n})

mana (T, ) = 1%

Top1y 5 H—15H44+15" s AR

(15)
Also (11) gives
WP(T {)) = L PPUT ().

Equations (14)—(16) lead to the determination of the
density:

i HG (T7 {M}) =
exp [_ UOPHngTv{#}):| n?t(T, im

1+vgexp [~ OGN | 52 nb (T, {u})

(16)

(17)

137

where the summation over index [ spans over all particle
species.

The hadronic partition function to be used extends to
all hadronic states containing u, d and s quarks as they are
listed in [30]. An equivalent description is possible if the fu-
gacities are used in place of the chemical potentials. Also
the different hadrons, described in the preceding equations
with index 4, can be organised in families each of which is
characterised by the same fugacity and contains a number
of particle species differing in mass and degeneracy factors.
The HG partition function for the point particles, which
contains all the particle species can, in accordance to (11),
be written down as follows:

VT mak
In Z56 (VT ANAD) = 3y DA D gaemike (1)
a k
(18)

where the g,r are degeneracy factors due to spin and
isospin. The index a runs over all hadronic families, each
of which contains members with the same quark content,
and k runs over all the particles of this family. The fugac-
ity Ag = [[, ADv = NoqNvtNv 'where v = u, d, s and N, (N;)
is the number of v(#) quarks contained in a hadron be-
longing to the family labeled a. For the light unflavoured
mesons with quark content (c;/2)(u+ dd)+ c285, c1 +
c2 = 1, the fugacity used is Ay = (Vuya)tv2°2. The ideal
partition function (18) can be used to determine the pres-
sure and densities of the point particle system. Thus (14)
acquires the form

T
T2 2 Mak
" on %:A“Zk:g“’“makm( T )

(19)

Pia (T, {\,7}) = exp [_ voPha (T, {w)}

which can be solved through an arithmetic procedure to
evaluate the system pressure Pyg for given set of variables
(T, {\,~v})- A particular density nft can also be evaluated
by (18), and using the already calculated Py the density
with the Van der Waals corrections is

i HG (T7 {/\7 ’Y})

_ (exp {_ UOPHG<§, {m})] WP (T, { M}))

/ <1 + o exp |:_ U()PHG (f_‘y {/\7 ’Y}):| 23;2

i (7))

= fvo; T AN AN (TN ). (20)
For the QGP phase a simple model containing three
flavours is used. The quarks are non-interacting, and only
the presence of gluons is accounted for, as well as the effect
of the vacuum through the MIT bag constant, B. A wealth
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of quark fugacities is easily accommodated, though, in this
model. The QGP partition function is consequently

N;N.V

In Zqcp(V, T, {\,7}) = 672T

>[r 1

X dp

v Y0 \/p2+mj2 e\/p2+mj2/T(/\l/yu)—1_|_1
87273 BV

+V 5 T (21)

where Ny = 2 and N, = 3. The index v runs over all quarks
and antiquarks and the fugacity Ay = ;! and v; = 7,.
The current quark masses are m, = 1.5, mg =6.75 and
ms = 117.5 MeV [30].

At the first order QGP-HG transition a mixed phase is
assumed. This phase spans over a curve in the (T, {\,v})-
space, so these variables are kept constant throughout the
mixed phase. The only thermodynamic variable that is
allowed to change is the system volume V. The volume
equals Vizg at the pure hadronic phase, at one end of the
first order transition, and Vqgp at the pure quark phase, at
the other end of the transition. The system volume V of the
mixed phase can then be expressed as

Viixed = 0Vaag + (1 - 5)VQGP . (22)
The parameter d is 0 < § < 1, and for § = 1 (§ = 0) we have
a pure HG (QGP) phase. The mixed phase is realised in a
composition of volume § Vi existing in the hadronic phase
and volume (1 —0)Vqep in the QGP phase.

The pressure of the hadronic part of the mixed system
can be calculated from (19) for the hadronic volume §Vii¢.
It is easily seen, though, that this pressure does not de-
pend on the volume. Since the hadronic pressure depends
only on the variables (T, {\,~v}), which are held constant
for all values of § in (22), it is concluded that this pres-
sure remains unchanged at every point of the mixed phase
and equals Pyg of the pure hadronic phase (for § =1). It
is, also, realised by checking (21) that the QGP pressure
does not depend on the volume, either. With similar rea-
soning, it is deduced that the pressure of the quark part of
the mixed phase remains constant and equals the pressure
Pqep of the pure QGP phase (for = 0). Then (1) ensures
the equality between the pressures of the pure phases, so
the pressures of the hadronic and the quark part of the
mixed phase are equal. Thus

Priixed = Pag = Pqap - (23)
The pressure is, consequently, kept constant throughout
the first order transition. The part of the P-V isotherm
that corresponds to the mixed phase is parallel to the V'
axis, as it is expected in a first order transition.

On the contrary, the densities vary. Equation (20) en-
sures that the density of the hadronic part of the mixed
phase is held equal to the respective density of the pure
hadronic phase, n; ng. Equation (21) ensures that the
density of the quark part of the mixed phase is held equal
to the respective density of the pure quark phase, n; qap.
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But in general n; ua (T, {\,v}) # niqap (T, {\,~7}). If the
density n; is associated with the quantity IV;, then

Nimixed  Ninc+ Niqap

i mixed =

Vmixed Vmixed
5VHG (1_5)VQGP
= i '3 . 24
Vmixedn HG Vmixed n,QGP ( )

It is easily checked that for 6 =1 (6 = 0) the density of the
pure hadronic (quark) state is produced. The conservation
of the quantum quantities B, @ and S is ensured in the
mixed phase. Equation (2) implies that (B)ug = (B)qap.
Then multiplication of both sides of (24) by Vijixed gives

Vinixed™ Bmixed = 0 (B)uc + (1 —8)(B)qap

= (B)mixed = (B)uc = (B)qcp - (25)
Equations (3) and (4) produce similar equations for Q
and S.

Between the crossover region (where z = 1) and the first
order transition line (where x # 1), the critical point re-
sides. Observing (1)—(6), it is clear that they do not provide
arestriction on z, other than that it should be a continuous
function. So these equations can accommodate an addi-
tional constraint in the form of x, which may be provided
by a sophisticated partition function that records the full
part of the interaction (the attractive part as well).

The system of (1)—(6) can then be solved for z =1 for
the crossover region or for  # 1 for the first order tran-
sition curve. The system is simplified observing that the
strangeness neutrality at the QGP phase (6) leads to the
solution A; = 1. This solution is valid for every case of QGP
partition function, as long as products of the fugacities
of the strange quark with the fugacities of the v and d
quarks do not appear. The initial system then is reduced
to the system of (1)—(5) for As = 1. The HG partition func-
tion (7) and the QGP partition function (21) is used for the
system of (1)—(5). For the particular choices of partition
functions, two parameters, B and v, are left open, produc-
ing different solutions for the transition curves. The system
of (1)—(5) for A; =1 accepts as solution for the variable s
the value 0, since then (4) is automatically satisfied. This is
a trivial solution, because it is equivalent to the absence of
the strange quarks in the system, and therefore such solu-
tions should be excluded. Non-trivial solutions for the ther-
modynamic variables are depicted for BY/4 = 272 MeV in
Figs. 14 for the isospin symmetric case (3 = 1). Since the
solutions are calculated in the Boltzmann approximation,
which does not include any Bose singularities, additional
checks are carried out for every part of the calculations to
ensure that the evaluated variables are such that no Bose
singularity is approached. Lines (a) represent the solution
without the inclusion of pentaquarks and are drawn for
vo = 2.83 x 1078 MeV 3. The crossover region, which is de-
termined uniquely after setting the parameters B and vy, is
drawn everywhere with slashed lines.

Two additional issues concerning the phase transition
are the position of the critical point where the cross-over
region ends and the first order transition sets in, as well as
the ratio of the volumes z = Viug/Vqap at the first order
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Fig. 1. Temperature as a function of chemical potential of
the baryon at the QGP-hadron gas transition line for B 1/4 —
272 MeV, without (lines (a),(c)) and with (line (b)) the in-
clusion of the pentaquark states. Lines (a) and (b) are cal-
culated with vy = 2.83 x 1078 MeéV 2 and line (c) with v =
2.06 x 1078 MeV~3. Line (d) is the phase transition curve cal-
culated from lattice QCD in [31]
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Fig. 2. Relative chemical equilibrium variable of the u quark,
Yu, as a function of the chemical potential of the baryon at the
QGP-hadron gas transition line. Lines (a)—(c) correspond to
lines (a)—(c) of Fig. 1

transition line. These two issues cannot be dealt with by
the simple choices of partition functions used for the cal-
culations of this section, since the attractive part of the
interaction among hadrons or quarks is completely neg-
lected. To display certain solutions for the critical curve
within the context of the partition functions (7) and (21),
the position for the critical point has to be chosen. How-
ever, the position of the critical point has not been well
established by the various models used for its calcula-
tion. In [31], the critical point is set at T'= 162+ 2 MeV,
up = 360440 MeV (displayed in Fig. 1, line (d)). This pos-
ition is determined by lattice QCD calculations by means
of a reweightening technique using three quark flavours
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Fig. 3. Relative chemical equilibrium variable of the d quark,
Y4, as a function of the relative chemical equilibrium variable
of the u quark, -y, at the QGP—hadron gas transition line for
the isospin symmetric case. Lines (a)—(c) correspond to lines
(a)—(c) of Fig. 1. The line 4 = 4 is also depicted
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Fig. 4. Relative chemical equilibrium variable of the s quark,
vs, as a function of the chemical potential of the baryon at the
QGP-hadron gas transition line. Lines (a)—(c) correspond to
lines (a)—(c) of Fig. 1

and considerably reduced light quark masses, approaching
their physical values. In [32], with the use of two flavours
of quarks and a Taylor expansion of the baryon number
susceptibility, the critical point is set at lower values of
up (up/T ~1.1). In [33], the position of the critical point
is limited within a region in the T—up plane using the
statistical bootstrap. In [34] a review of our understand-
ing of the position of the critical point in various models
can be found. It should be noted that the various calcula-
tions [31-33] are carried out assuming full chemical equi-
librium ({7} = {1}) and, thus, cannot be applied to the
present situation, where partial chemical equilibrium is as-
sumed. In order to display a solution for the transition
curve, the chemical potential of the baryon at the criti-
cal point is chosen as B cr.p. = 360 MeV in Figs. 1-5. This
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Fig. 5. Volume expansion ratio x = Vg /Vqap between pure
hadron and pure QGP phase at the same transition point,
as a function of the chemical potential of the baryon, which
was used in the calculations in Figs. 1-4. Lines (a)—(c) corres-
pond to lines (a)—(c) of Fig. 1. In lines (a) and (b) z; = 1.06 at
Ayl =14.2 and e = 1.5 and in line (¢) 1 = 1.07 at A, = 14.2
and e =1.15

choice does not present a preferable value, and any other
choice can be accommodated in the set of (1)—(6).

A form for the ratio of the volumes x has to be defined
as well. This form has to produce x = 1 at the critical point.
Moreover, it is chosen to produce a given value x; at a spe-
cific value of \,1. A simple form that implements these
demands is

l u_l Uu,Cr.p. ‘
o=t (e e ) o),

In )\ul —In )\u,cr‘p. (26)
where the exponent e regulates the curvature of the first
order transition line. For lines (a), 1 = 1.06 at A,; = 14.2
and € = 1.5 are chosen. Of course, any function of x can be
used, producing different first order transition curves. The
resulting first order transition lines are drawn with solid
lines in Figs. 1-4, while the respective critical points are
represented by solid circles.

The temperature T is displayed as a function of the
chemical potential of the baryon pup in Fig. 1. In the same
figure, line (d), which represents the phase transition line
as it is calculated from the lattice QCD in [31], is drawn for
comparison.

The relative chemical equilibrium fugacity -, is dis-
played as a function of up in Fig. 2. This particular solu-
tion leads to the gradual suppression of -, as the chemical
potential of the baryon increases. The connection of ,, and
~4, for the isospin symmetric solution, is depicted in Fig. 3.
The line ,, = 74 is also drawn for comparison. The relative
chemical equilibrium factor 7, is drawn as a function of the
chemical potential of the baryon in Fig. 4.

In Fig. 5 the ratios of the volumes z, which are used in
the first order transition, are drawn against the chemical
potential of the baryon. The forms used for x are increas-
ing functions with respect to the chemical potential of the
baryon. The resulting first order transition lines produce
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lower temperatures as the chemical potential of the baryon
increases, something which is expected.

One direct consequence of the simultaneous solution
of (1)—(6) is that the relative chemical equilibrium fugaci-
ties have values that depend on each other at every transi-
tion point. This is easily realised by inspecting the condi-
tion ng,, =0 (for Ay = 1). The solution of this condition
in the Boltzmann approximation is simplified by the as-
sumption that isospin symmetry leads to the approximate
solution A, = Ag = Aq and vy, = 74 = 4. Neglecting trivial
solutions, where 5 = 0, the zero strangeness condition can
be solved to give

Fr(T) = Fa(T)vg(Ag + 27 ")

Vs = QFE(T) (27)

In (27), Fi corresponds to the kaon mesons, Fiy to the
hyperon baryons (As and X's) and F= to the = baryons,
while the summation

T Meaj
FuT)= )y . guimi K ( - )

over all particles i of the same family is implied. In the
above relation, K denotes the modified Bessel function of
the second kind. It is evident from (27) that the increase
of the relative chemical equilibrium factor for the light
quarks, 74, and the increase of the light quark fugacity,
Mg, leads, at constant temperature, to a decrease of the
factor ~s.

It should be noted that the lattice QCD line (d) in Fig. 1
is calculated for 7y, = v4 = vs = 1, whereas (a) is a curve in
a multidimensional space. In that sense Figs. 1-4 depict the
projections of the transitions curves on the corresponding
2-dimensional planes. The position where the transition
line (a) intersects with the temperature axis, Tp, in Fig. 1,
depends on the values of the unknown parameters B and
vg. Tp corresponds to p,, = ptg = pts = 0 and mainly depends
on B and to a lesser extent on vy. Tg is found to increase
if B increases for vy kept constant and, also, Tj increases
if vy increases while B remains constant. Figure 6 includes
calculations without pentaquarks of T} for a fixed value of
vo = 2.83 x 1078 MeV 3 and varying values of B. As B in-
creases, while vy is kept constant, T} is driven to greater
values, but at the same time all the fugacities {v} are sup-
pressed. In Fig. 6 T} is plotted against the corresponding
Yo (line (1)), 4 (line (2)) and 5 (line (3)). The values of 7,
or 4 are shown at the low horizontal axis and the v, values
at the upper horizontal axis. It is clear that the increase of
the pressure and the densities of the hadron gas that is due
to the increase of the temperature is compensated through
a reduction that is due to the suppression of {v}.

In Fig. 7 the entropy to baryon number ratio (S/B) is
plotted for the values of the thermodynamical variables of
the transition curves (a) of Figs. 1-4. The upper line cor-
responds to the pure QGP phase and the lower one to the
pure hadronic phase. The part related to the first order sec-
tion of the transition (up > 360 MeV) is consistent with the
transition from a higher entropy phase (QGP phase) to the
lower entropy hadronic phase. However, the simple models

(28)
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Fig. 7. The entropy to baryon number ratio calculated for the
thermodynamic variables of the transition line (a) depicted on
Figs. 1-5. The continuous line corresponds to the pure hadronic
phase and the slashed one to the pure QGP phase

used in the calculation cannot produce the continuity of
the entropy (which is related to the T-derivative of the par-
tition function) at the crossover region (up < 360 MeV).
The inclusion of the interaction in the quark—gluon parti-
tion function is crucial for producing a reduction of the en-
tropy of the ideal QGP phase, and thus for having a smooth
transition to the entropy of the hadron gas.

4 Inclusion of pentaquarks

Evidence has accumulated for hadrons containing five
quarks. These 5-quark states are the ©1(1540) [35-39],
with I = 0 and quark content uudds, and the =*(1862), with
I = 3/2. The content of the states =*(1862) is ssddu (for the
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state with electric charge Q = —2), ssuda (with Q = —1),
ssudd (with @ = 0) and ssuud (with @ = +1). The exis-
tence of the first three of the states =*(1862) has been con-
firmed [40,41]. The motivation to investigate the effect of
the pentaquark states comes from the fact that these states
can alter (1)—(6), since they introduce additional hadronic
families, each of which is accompanied by completely differ-
ent functions between the fugacities of the system compared
to the ones in the already known families. This can be eas-
ily realised if the corresponding equation of (27) is written
down as follows:

Vs = [Fx(T)+ Fo(T)y2 (A2+X,%) (Ag+ A, 1)

—Fu(T)yg (Mg + ;)] {2 [F=(T) + F=+ (T)h2]}

(20)

The existence of the @ hadron drives -, to higher values
with a strong dependence on v, and \;, whereas the inclu-
sion of the =™ states contributes to the decrease of ~s.

The system of (1)—(6) is then solved with the inclusion
of the ©1(1540) and =*(1862) states with the same parti-
tion functions for the HG and the QGP phase and for the
same parameters B, vy as in the case without the inclu-
sion of the pentaquarks (lines (a) of the previous section).
The resulting curves are lines (b), shown in Figs. 1-4. The
adopted form of the ratio of volumes z again produ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>